Construction of a Digital Geologic Map and Interpretation of the Tectonic and Geomorphic History of Upstate South Carolina

Tim P. Moloney

FURMAN
Dept. of Earth and Environmental Sciences, Furman University, Greenville, SC 29613

South Carolina
John M. Garihan
2009

Figure 2. Fow chart explaining methodology. The project can be cudivided into three components. First, a geologic map was digitized (yellow elements). The geologic data was used to examine the orientations of faults (blue elements), and the relationship between geology and soils (purple elements). All
digitization, analysis, and cartography was done in ArcGis 9.3 . The geologic map was digitized according to the methods of the South Carolina Geologic Survey
Legend
microbreccia float
smal spring or seep
minor antitiom

miners syltorm
minor z-fold

strikedip
Quarangale
strikedilip
Quarangle Boundary

- ${ }^{\text {anditiorm }}$ $:-$ synform

- oblicune sip fautr
 concealed oblique sip faut

- strike silip faul
${ }_{-}^{\text {contact }}$ coled contact
- thrust faul
concealed
-.c.cnealed thrust taut
- overturned thrust faut

quaternary colluv
quaternary gravel
Rocks of the Six Mile Thusts Sheet
isted in order of metamophic sequence
amphibolite
schist, paragneiss, and amphibooite

biotite-quartzo-feldspathic gneiss

biotite-aygen gneiss

Geology controls topography in a complex

 geologic contacts (Figure 3), but faulting also produces surface relief (Figure 7, Garhian and Ranson 1989). The combination of differential erosion across geologic contactsand rate of upliftsubsidence on faults controls the topography of a region. The degree of topographic variation impacts the late of erosion and sedimentation. To better
locate areas of high slope, see the map o ocate areas of high slope, see the map of

opographic slope in the Saluda Quadrangle | opograph 2). |
| :--- |

Lime

 Each soil series in the map above has a generally uniform thickness and characteristic profile (Figure 5). The lopography plays a role in the development of soils; there are characteristic units for ridgetops, valleys, and Saluda and Edneyville series is found in the southeast of the quadrangle, in lower areas of relatively little slope. The geologic units were combined with the soil series polygons in a vector overlay, and the resulting map is also shown superimposed on the hillshade layer (Figure 4). In most cases, the soil type appears more strongly associated with topographic slope, rather than the bedrock geologic unit. In places, some association is
possible, for example the Fannin series may be derived from gneisses and quaternary gravels in the northeast of the quadrangle. A high degree of topographic variability in this region and comparatively little geochemical variability in the composition of the rocks explain account for the topographic, as opposed to geologic, control of soil formation. The formation of the soil is due mostly to the topographic position of the locality and the degree of
chemical weathering. Although the geochemistry is relatively homogenous, geology still exerts an profound chemical weathering. Although the geochemistry is relatively homogenous, geology still exerts an profound
influence on soil formation due to the geoologic controls of faults and contacts on the surface relief and topographic slope.

Fault Orientations in the Saluda Quadrangle

Rose diagrams were constructed with a VisualBasic programmed tool for ArcGIS by Shan Chen (Chen 2005), Based on their orientations in the Saluda Quadrangle, brittle faults appear to belong to four main sets and one minor set. Two sets (a northeast set and an east-northeast set) lie between $N 50^{\circ}-80{ }^{\circ} \mathrm{E}$. Two sets (a northnorthwest set and a northwest set) lie between $\mathrm{N} 20^{\circ}-50^{\circ} \mathrm{W}$. Poorly represented in this compilation is a $\mathrm{N} 20^{\circ} \mathrm{E}$
fault orientation' set. The NW -trending faults are consistently truncated or offset by the NE -trending faults. More fault orientation' set. The NW-trending faults are consistently truncated or offset by the NE-trending faults. More
northerly faults in turn truncate the northeasterly sets. The influence of faulting on the topography is evident in northerly fauits in turn truncate the northeasterly sets. The influence of faulting on the topography is evident in
east-northeast trending ridges, especially in the central and southwestern portions of the quadrangle. The NW
trending fauts are not commonly associated with ridges. trending faults are not commonly associated with ridges.

- ArcGIS was used in this study to seamlessly digitize, represent, and analyze geologic data.
- Spatial Analysis of the geology and soilis in the Saluda Quadrangle, SC, does not indicate a strong relationship between geologic unit and soil series at a fine scale. Soil formatio
actors. Topography is controlled by the geologic contacts and faults. are oriented $\mathrm{N} 20^{\circ}-50^{\circ} \mathrm{W}$. The control of faulting over topogrenhy C . $\mathrm{N} 50^{\circ}-80^{\circ} \mathrm{E}$ and two other primary sets rending nidges associated win these faults.

